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On the Relative Efficiencies of Single and Replicated Simple Random Samples
by •M.e. Agrawal

Abstract

Subject to the same total expected cost (taken as proportional to effective sample size), a commonly used es

timator based on k independent interpenetrating sub-samples of equal size selected according to SRSWOR method

has been compared with the usual estimators based on (i) SRSWR and (ii) SRSWOR, and is found to be more ef

ficient than the former but less than the latter. This estimator has also been compared for the same expected cost

with an estimator based on 'dependent' sub-samples in interpenetrating sub-sampling.

Numerical results on the relative efficiencies of the above and some other estimators are presented and the ef

fect of showing consideration to non-integer sample sizes has been studied.

•

•

1. Introduction

The usual estimator obtained by the technique of in

terpenetrating sub-samples (also known as replicated

sampling) has been compared with the estimators based

on a single sample drawn by employing (i) simple ran

do~' sampling with replacement (SRSWR) and (ii)

simple random sampling without replacement

(SRSWOR). Singh and Bansal (1975) studied the rela

tive efficiencies of estimators based on single sample

drawn with SRSWOR and on independent replicated

samples drawn with SRSWOR keeping the overall effec

tive sample sizes equal for both the schemes. We con

sider here their relative efficiencies against the sample

mean in SRSWR keeping the average effective sample

size equal, implying thereby that the expected cost,

which is taken proportional to effective sample size, is

the same. Sections 4 and 6 are.then devoted to a numeri

cal comparison of some potentially competing es

timators. In this connection we have also addressed
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ourselves to the question as to what is the effect of taking

into account the possibility that the (average effective)

sample size is not an integer.

Roy and Singh (1973) proposed an estimator (dis

cussed in Section 3 of this paper) which is shown by them

to be more efficient than the one under consideration in

iriterpenetrating sub-sampling. Here, we shall compare

them for the same expected ~ost taken proportional to

effective sample size.

2. The relative efficiency

. For a population of N units, let Yj be the value of

some Y-characteristics associated with the jth unit G=
1,2, ..., N).

An estimator of the population mean

N

YN = k Yj/N

j = 1

generally used in applying the technique of independent

interpenetrating sub-sampling briefly TIIS (with K sub

samples, each of size n~/k; drawn with SRSWOR making

up a sample of size n*) is
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k

yr = !,Yil k

i =1

where Yi is the arithmetic mean of n°/k observations in

the i th sub-sample selected with SRSWOR.

2.1rns Versus SlRSW!R.

It iswell-known that for a sample ofsizen inSRSWRthe

averageeffective sample size is

E(u) = N[l- (1- liN) 0]. (2.1.1)

Also for k independent replicated samplestaken as

above, the average effectivesize is '

, E(u
o

) = N[l- (1- nO/kN) k].

Equating E(u) withE(u"), we determine n° in terms

of the other parameter. Then, the relative efficiency of

the sample for SRSWR with respect to yr works out as

n (1 - lIN) nIk (1 - a) 13-1 a13

R.E. = ----------------- =1 ----------------- = E1 (say)

k(N-1)[1-(1-lIn)nIk] 1- (1- a) 13

(2.1.2)

where a = lIN and 13 = n/k.

THEOREM 2.1.1 The relative efficiency expressed by

(2.1.2) is always less than or equal to 1.

PROOF The relativeefficiencywill be lessthan 9r equal

to 1 if

(1_a)13-1 a13 s 1 - (l-a)13

or (1-ar1 a13 S (l-a) -13 - 1

Since 0 < a < 1, we expand both sides and collect the

coefficientsof powers of a. Thus, we get

00 (13+1) (13+2) ... (13+r-1)

13!, aC
------------------------------------- - 1 z 0,

r = 2 r!

whichalways holds as 13 ~ 1.

It can, therefore, be stated that the TIIS estimator

yris more efficient than the usual SRSWR estimator.
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It iseasyto see that the relativeefficiency expressed

by (2.1.2) does not change when n and k vary in such a

manner that n/k is a fixed value for a givenN. We have

the following theorem regarding the behaviour of the

relative efficiency.

THEOREM 2.1.2 The relative efficiency expressed by

(2.1.2) is

(i) strictlyincreasingwithk for fixed valuesof n and

N

(ii) strictlydecreasingwithn for fixed valuesofkand

N.
PROOF In order to prove the two parts of the theorem,

we differentiate (2.1.2) with respect to 13, and showthat

aEl

------- < O. Differentiation yields

a13

aEl a(1-a)13-1 [log(l-a)13 + 1- (i-a)13]

------ = ----------------------------------------------

Now, let

1 - (1-«)13 = y

so that

10g(1-a)13 + 1- (l-a)13 = 10g(1-y) + y.

Since for 0 < y < 1

Y + log (l-y) < 0,

it follows immediatelythat

aEl

------ < 0.,

a13

In order to enable the reader to get some id<!a about

the relative efficiency Ei of 'estimator and also to il

lustrate simultaneously the above theorem, we make

simple numerical investigations.

•
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• Making use of (2.1.2); we have prepared the follow

ing table for N = 50.

and further

aE2 1f(1 - a,)13'-2 [l-a'lf - (l-a,)I3,]

n/k 2

6

10

15

20

.9790

.9600

.9356

.9116

3

.9899

.9766

.9600

.9432

4

.9949

.9849

.9724

.9600

- .---_...--------_..- ...._--_.....---._-_.....------_...--.'

aa'

Since

1- a'I3' - (l-a')13' = 1- (n'/Nk) - (1- n'lN)llk

= «k-1)/2k2) (n'1N)2 + «k-1) (2k-1)/6k3
) (n'IN)3

•

•

•

[See also Section 4.]

2.2 TIIS·versus SRSWOR

The relative efficiency of the sample mean based on

n' draws in SRSWOR with respect to the TIIS estimator

yr, both based on the same average effective size is

n'(l-n'IN) 11k (l_a,)I3'-1 a'W

R.E. = ---------------------- = ------------------- = E2 (say)

k(N-n') [l_(l_n'IN)IIk] l-(l-a')13'

(2.2.1)

where a' = n'IN and If = 11k.
As has been shown by Singh and Bansal (1975), the

relative efficiency expressed by (2.2.1) is greater than or

equal to 1.

TH~OREM 2.2.1 The relative efficiency expressed by

(2.2.1) is strictly increasing with

(i) k for fixed values of n' and N

(ii) n' for fixed values of k and N.

PROOF Parts (i) and (ii) of the-theorem easily follow

bydifferentiating (2.2.1) with respect to If and a; respec

tively. In view of the analogy between the expressions

(2.1.2) and (2.2.1), we easily obtain as in the proof of the

Theorem 2.1.2

aE2

------ < 0

alf

+ ...,
it is then evident that

aE2

------ < 0

aa'

ask> 1.

This completes the proof of the theorem.

We compute below E2 from (2.2.1) for N = 50.

n'/k 2 3 4

6 1:0330 1.0452 1.0498

10 1.0590 1.0792 1.0894

15 1.0976 1.1316 . 1.1488

20 1.1455 1.1972 1.2235

The table points to the fact that IDS can be considered

fairl~ close to SRSWOR for suitably chosen number k

and ratio n'/N. This encourages us to be inclined

favourably towards TIIS which is additionally and intrin

sically endowed with certain desirable properties. [See

also Section 4.]

,3. Interpenetrating sub-samples- with and without re

placement

Under the same cost consideration as above, the

usual estimator in TIIS willnow be compared with an es

timator based on sample obtained in such a manner that,

in contradistinction to TIIS, sub-samples drawn accord- .

ing to SRSWOR are not replaced ( and hence there is

no common unit between the sub-samples). This sam-
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pIingscheme amounts, in practice, to drawing 11< units

bySRSWOR and then assigning the first I units to sub

sample 1, the second I units to sub-sample 2 and so on;

or else lk units maybe allotted to the k sub-samples in a

prespecified manner. Roy and Singh (1973) have con

sidered 'ordered' and 'unordered' estimators based on

thesek dependent sub-samples. Sincethe more efficient

'unordered' estimator, as shoen by them, is the same as

the usual SRSWOR estimator, we need to consider, for

the intended comparisonwithyr, the 'ordered' estimator

defined by

yr' = lINk(tt + ... + tx)

where ti = Nyi

tr = I (Yl + ... + yr-l) + (N - (r-1) l)Yr(r =2,3,...,k)

and Yi = mean of the i th sub-sample (i = 1,2, ..., k).

This estimator is unbiased and its variance is given

by

V(y'.y.) ,= lI1kf'J2 [N2- kNl + (12/3) (k2 - 1)] S2

N

where S2 = 1/(N-1) l (Yi- yi
i =1

Hence, the relative efficiency of y'r with respect to

yr keepingthe averageeffectivesizethe same is obtained

as

1[1- (lk/n) + (12/3N2)(k2_1)]-1

R.E. = ----------------------------------------- (3.1)

N [ (1 ~ (lk/Nr1/k - 1]

THEOREM 3.1 The relative efficiency expressed by

(3.1) is greater than or equal to 1 if

5k+ y' 13~+12

N ~ ----------------,------------- (3.2)

6

whichisalways satisfied if N ~ 3/2kl (k z 2).

PROOF Expanding the term in the denominator of

(3.1),we get

28

[ 1- (lk/N) + (12/3N2) (k2- 1)] -1,

R.E. = ------------------------------------------------------~---

1+ «k + l)/2)(VN) + «k + 1)/2)«k + 2)13)(121N2) + ...

Since

(rk + 1) / (r + 1) s k (r ~ 1),

we have

[ 1- (lk/N) + (12/3N2) (k2_1)] -1

R.E. ~ ---------------,------------------------------------

1+ «k +1)/2)(l!N)[1+ (kIlN) + (k2121N2+ ...]

(1- (lk/N) [1- (lkIN) + (12/3N2) (I? -1)]-1

..= ----------------------------------------------------------,

{l-(k -1)1/2N}

whichisgreater than or equal to 1if (3.2)issatisfied,and

hence it follows that, subject to the cost consideration

discussedabove,y'Tperformsbetter than yr ifN exceeds

3/2kl (k ~ 2).

It is clear from (3.1) that, for given VN and k, the

relativeefficiency V(yr)N(y'T) is insensitiveto changes

in N. In order to givean idea about the relative efficien

cyexpressedby(3.1),we have prepared a small table for

N = 50.

k=2 k=4

k=8 1.0376 1.0588

k = 12 ' 1.0536 1.0859

k = 16 1.0662 1.1101

k = 20 1.0739 1.1294

It maybe noted from the table that the gains of y'T over

yr are smallunlessthe samplingratio and the number of

sub-samplesare large.

•

•

•
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• 4. TIIS, SRSWR and SRSWOR 0.1

Y·l(v·4

.9975

.9900

.9885

.9876

.9624

.9627

.9627

.9627

k:=4

k=4

.9701

.9556

.9527

.9508

k=3

.9931

.9858

.9844

.9835

.9665

.9668

.9668

.9668

k=3

.9600

.9531

.9517

.9508

.9748

.9749

.9750

.9750

.9848

.~776

.9762

.9752

k=2

k=2

Y·lIV·3

N = 50

N = 200

N = 500

N=oo

n/N = 0.2.

N=oo

N=oo

N = 50

N = 200

N = 500

N = 50

N = 200

N == 500

and Y SRSWR = [(N-1) / (Nn)] S2.

To have a simultaneous and collective view of the

performance of the estimators in the three sampling

schemes, viz., TIIS, SRSWR and SRSWOR,. we may

proceed with the computation of the relative sizes of the

three variances conditioned by the same total expected

cost. We take n draws in SRSWR and then bring about
\

a parity in respect of the expected cost, i.e., in terms of

the expected number of distinct units in TIIS and

SRSWOR. In order to achieve this in the case of

SRSWOR, we simply have to take the expected number

of distinct units v given by (2.1.1) as the sample size in

SRSWOR and thus we shall get the following variance

N-E (v) (1- (lIN)) n
YSRSWOR = ------- S2 = S2.

NE(v) N[l- (1- (lIN) "l
We may make use of the variance expressions of Section

2.1 for TIIS and SRSWR, i.e.,

(1 - (lIN» nIk

Y TIIS = -------~----------------- S2. (4.1)

Nk [1 - (1 - (lIN)) nIk]

•

•

•

It will not be out of place to consider the perfor

mance of an estimator which is the average of the distinct

values obtained in an SRSWR sample of size n. The

variance of this estimator is known to be

N -1

Y SRSWR(D) = (S2IN) I GIN) n-l

j = i
Denoting the variances Y SRSWOR, Y SRSWR(D), ': TIIS

and Y SRSWR by Y·I, Y·2, Y·3 and Y·4 respectively, we

prepare the following table:

N = 50

N = 200

N = 500

N=oo

Y*3N*4

N = 50

N = 200

N =.500

N = 00'

k=2

.9600

.9531

.9517
,

.9508

.9116

.9054

.9041

.9033

k=3

.9766

.9694

.9679

.9670

.9214

.9078

.9051

.9033

k=4

.9848

.9776

.9762

.9752
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k=2 k=3 k=4

N = 50 .9495 .9335 .9256

N = 200 .9500 .9340 .9261

N = 500 .9500 .9341 .9262

N=oo .9500 .9341 .9263

Ifwe think in terms of the same expected cost for the

sampling schemes where cost is taken as proportional to

the expected number of distinct units, then the following

comments will be in order:

(1) In respect of the efficiency, the TIIS estimator

considered in Section 3 falls between the SRSWOR es

timator and the usual SRSWR estimator, and its perfor

mance depends on the factors n/N and k.

(2) For large N, the gain in efficiency attained by

both the SRSWOR estimator and the estimator based on

distinct units in SRSWR over the usual SRSWR es-..
timator is hardly different, and it is no different as

N - > 00. This remark emerges analytically, as under the

limit process

N - > 00, n - > 00 and n/N - > fo,

we find that both

N-1

NS·2YSRSWR(D) = I GIN)n.1

j =1

and

[1- (lIN)] n

NS·2YSRSWOR = ----------------
N [ 1- (1- (lIN))n]

tend to V(efO
- 1).

(3) While sampling from a population of given size
" " .N, the relative efficiency Y 3IV 4 can be matched WIth

the relative efficiency V"IN"4 if the ratio n/N(n = num

ber of draws in SRSWR) on which the latter is based.

This can be seen from the relevant variance expressions
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involved here. An indication of this is available from the
0: 0: .. 0: 0:

column Y tfV 4 with n/N = 0.1 and the column Y 3IV 4

with n/N = 0.2 and k = 2.

(4) Given n/Nand k, the relative efficiency Y· tfV·3

is practically unaffected by a change in the size of the

population. A scrutiny of the relevant variance expres

sion also points to this effect.

5. lEffectof Consideration to non-integer sample sizes

We shall now undertake an investigation with a view

to finding the effect of not taking into account the pos

sibility of non-integer (average effective) sample sizes in

our preceding discussion. In order to make efficiency

comparisons for the same expected cost Ramakrishnan

(1969) suggested an unbiased 'randomized' estimator in

SRSWOR with due consideration to the fact that the ex

pected number of distinct units in a with-replacement

sample need not be an integer. This 'randomized' es

timator defined by

y [E(u)] with probability PI
•

Y E(u) =
y [E(u)] + I with probability P2

has the variance given by

y(y.E(u») = {(2 [E(u)] + 1-E(u))/([E(u)]([E(~)] +1))

- (lIN)} S2

where PI = 1- Etu) + [E (u)] ,P2 = E(u) - [E(u)] and

[z] denotes the integral part of z.

It may be pertinent to point out that, in the above

context, the qualifier 'randomized' seems to be a mis

nomer, and hence we would instead like to call

t'E(U) an estimator based on a randomized sample size

(rss).

Using an estimator with rss for each sub-sample of

size n"!k (n" is 2hosen as explained in Section 2.1), we

can strainghtaway write the new variance in TIIS as

•

•

•

•

•
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y03° = 11k {«2[mo] + 1-mo)/([mo]([mo]+1»

- (l/N)}S2
° ° n/kwhere m = n /k = N(l· ( 1- (liN» ).

It can easilybe verifiedthat v' 3° z v:3, wherev'3
has the same meaningas in the last section and is given

by(4.1),i.e.,v'3standsfor the varianceobtainedwithout

regard to non-integersample sizes.

To determine the effectof showing considerationto

non-integer sample sizes, we shall examine the relative

increase in v'3givenby

12 = (y03°N°3).-1 = {mo/(l-(mo/N»}

{«2[mo] + l~m")./([m·]([m·]+l»)~l}.

Settingm° = x + a wherex is the integral part of m°and

a is the fractionalpart lying between0 and 1,weget after

some simplification

12 = [(a(1-a»/(x(x+1»][1-«x+a)IN)]"1.

(5.1)

Obviously, 12 will be zero if mO is an integer. Assuming

N to be large enough as compared to m
0
, 12 can'be ap

proximated by

i2 = [a(1-a)]/[x(x+1)] (5.2)

We shallnowstudythe behaviourof12 expressedby(5.2)

for non-integer values of m
O.

For this purpose, we first

of all notice that the supremum of 12, givenX, is at a =

1/2, whilethe unconditionalsupremumis at a= 1/2and

x = 1. Furthermore, the functionjz, for a givenX, is sym

metric about x + 1/2. It can also be easilyseen that the

function12, whichis a measure of inflationinv'3arising

out of consideration to non-integer sample sizes,yields

values all below or equal to 1% if m° exceeds 5. Also,

less than 1% inflationoccurs even for non-integer m°<

5 if m° is close to an integer or it assumesvaluesavoid

ing a certain range (depending on x) around x + 112

(x = 1, 2, 3 and 4). It maybe mentioned that these ob

servations apply equally well to the case of SRSWOR

whichoccurs for k = 1.

If need be, the multiplying factor (l-«x + a)lN)r1

in (5.1)couldbe brought into consideration to'adjust the

earlier computations. Here, it maybe noted that an in

crease inN, for a given m
0
, isaccompaniedbya decrease

in 12.

6. TIIS with distind units versus SRSWOR

This section is intended to bring out some features

ofa comparisonbetweenan estimatorYD inTITS defined

as an averageof distinct units in k sub-samplesof equal

size I (= n°/k) drawn independently according to

SRSWORand the SRS,WOR estimator byobserving the

samecost considerationas before, In viewof certainob

vious difficulties in evaluating th'e combinatorial

varinace expression for the former estimator, it is

desirableto prepare a separate table to facilitateanexact

comparison between these two estimators for ap

propriate valuesof n° and k so that isan integer.

The varianceof YD is givenby

(N-r\ k

1 N·I \ I J
. 2

YTIIS (D) = ._-_..._.... I ._...-_....-. S .

(N\kr=l N-r

\ I J
[SeePathak (1964) and Agrawal] (1981).]

If n° is the sample size in TITS, then we knowfrom

Section2.2 that the sample sizen' in SRSWOR is deter

mined by

n' = N[l- (1- (no/kN»k].

The variance of the SRSWOR estimator of the

population mean is then obtained as ,

Y'SRSWOR = [(N.n')INn'] S2

= { [l.(nolkN)] kiN [ 1- (l-(n°/kN)ln S2
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An asymptotically interesting result follows if

N-> oo,k-'> 00 and[Ik(=n*)IN]-> fo•

Under these conditions

NS-2VTIIS (0) - > [1/ (e fo-1) )

and

NS·2V 'SRSWOR - > [ 1/ ( e fo_1»).

For fixed k and large N, the difference of the two varian

ces will be obtained as

VTIIS(O) - V'SRSWOR = [l/2N) [ (k-1)!k(k1-1») S2,

to terms of order N-l .

To illustrate the above, we have computed the rela

tive efficiency in the following table.

SRSWOR estimator. It is, further, clear from the table

that the relative performce of the two estimators for a

given population of size N is hardly affected by a change
. .
in the value ofthe n IN.
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